JOM 23944PC

Preliminary Communication

Complete desulfurization of diethyldithiocarbamato ligands to give a pentaruthenium cluster containing diethylaminomethylidyne ligands

Antony J. Deeming and Romila Vaish

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (UK) (Received June 2, 1993)

Abstract

Oxidative addition of the disulfide $Et_2NC(S)SSC(S)NEt_2$ to the cluster $[Ru_3(CO)_{12}]$ leads to the diethyldithiocarbamato complex, $[Ru(Et_2NCS_2)_2(CO)_2]$ 3, which reacts with more $[Ru_3(CO)_{12}]$ to give mainly the pentanuclear cluster, $[Ru_5(\mu_4-S)_2(\mu-CNEt_2)_2(CO)_{11}]$ 4, containing bridging diethylaminomethylidyne ligands derived by cleavage of *both* C-S bonds of *both* dithiocarbamato ligands.

The diethyldithiocarbamato ligand (Et₂NCS₂) has been much studied as a generally robust bidentate ligand [1], but in a few cases it has been shown to undergo fragmentation to give complexes containing the diethylthiocarbamyl ligand, Et₂NCS, for example at Mo, Nb and Ta centres [2-5]. In one case, a double desulfurization of the Et₂NCS₂ ligand was proposed to account for the formation of the S₂ complex [Mo- $(NPh)(\eta^2-S_2)(Et_2NCS_2)_2]$ on reaction of PhNCO with $[MoO_2(Et_2NCS_2)_2]$ [6]. In this case the residue of Et_2NCS_2 after abstraction of S_2 was not recovered. However, in some of our recent work in which we were trying to relate the chemistry of pyridine-2-thionato to that of diethyldithiocarbamato ligands, we discovered a reaction leading to complete removal of two S-atoms from the Et₂NCS₂ ligand to form a cluster contain the diethylaminomethylidyne ligand, CNEt₂.

The cluster $[Ru_3(CO)_{12}]$ reacts cleanly with the 2,2'-dipyridyl disulfide (pySSpy) to give the pyridine-2thionato ruthenium(II) complex, $[Ru(pyS)_2(CO)_2]$ 1, which can also be prepared in other ways [7,8]. We have shown that this ruthenium complex reacts with $[Ru_3(CO)_{12}]$ in refluxing xylene in an open vessel from which CO can escape to give the pentanuclear cluster

Scheme 1.

(Ru3(CO)12) +

[Ru₅(μ_4 -S)₂(μ -C₅H₄N)₂(CO)₁₁], **2**, both pyS ligands having been cleaved into 2-pyridyl and sulfido ligands [9]. Reaction in a sealed glass tube gives additional complexes with higher CO content viz. [Ru₄(μ_4 -S)(μ -C₅H₄N)₂(CO)₁₂] and [Ru₆(μ_4 -S)₂(μ -C₅H₄N)₂(CO)₁₈]. The Ru₅ cluster contains a pentagonal bipyramidal arrangement of the Ru₅S₂ atoms, and the separated sulfido and 2-pyridyl groups are incorporated as ligands (Scheme 1) [9]. This prompted us to use the same procedure in an attempt to synthesise the new diethylthiocarbamyl cluster, [Ru₅(μ_4 -S)₂(μ -Et₂NCS)₂(CO)₁₁], by C-S bond cleavage.

The disulfide, $Et_2NC(S)SSC(S)NEt_2$, reacts with $[Ru_3(CO)_{12}]$ in refluxing heptane for 8 h to give the diethyldithiocarbamato complex, *cis*- $[Ru(Et_2NCS_2)_2$ - $(CO)_2]$ 3, pale yellow crystals in good yield, by oxidative addition. The formula and structure were confirmed by IR, NMR, and mass spectroscopy [10*]. Reaction between 3 and $[Ru_3(CO)_{12}]$ (mol ratio, 1:1) in refluxing xylene under nitrogen for 30 min gave a mixture from which we separated and characterised a minor uncharacterised green product and deep red crystals of 4 as the main product [11*]. The ¹H NMR spectrum of 4 showed two A_2X_3 patterns and one ABX₃ pattern in intensity ratio 1:1:2, whereas a structure directly analogous to that of 2 would have exhibited four equal intensity ABX₃ patterns. The

Correspondence to: Professor A.J. Deeming.

^{*} Reference number with asterisk indicates a note in the list of references.

mass spectrum indicated that the diethylthiocarbamyl formulation $[Ru_5(\mu_4-S)_2(\mu-Et_2NCS)_2(CO)_{11}]$ was incorrect, and that 4 actually contains two fewer S atoms than required by this formula.

A single-crystal X-ray structure determination established the molecular structure shown in Fig. 1 [12*]. The Ru₅S₂ core is pentagonal bipyramidal, very similar to that in cluster 2. There is a Ru_4 butterfly arrangement with the fifth Ru atom bridging the wing-tip Ru atoms and the μ_4 -S atoms are pyramidal and thereby behave as 4-electron donors. The organic bridges are diethylaminomethylidyne (CNEt₂) rather than diethylthiocarbamyl ligands (Et₂NCS), and this is the first report of this ligand being formed from diethyldithiocarbamate. All four S atoms have been abstracted from the two original Et_2NCS_2 ligands of 3, but only two remain in the cluster. We do not know the fate of the other two, but they are likely to be incorporated into ruthenium-sulfido by-product. Unlike in cluster 2, in 4 there is a molecular plane of symmetry, and the organic bridges are differently positioned (compare 2 in Scheme 1 with 4 in Scheme 2) so that the ¹H NMR spectrum can be rationalised. One CNEt₂ ligand has

Fig. 1. Molecular structure of the cluster $[Ru_5(\mu_4-S)_2(\mu-CNEt_2)_2-(CO)_{11}]$, 4. Selected bond lengths (Å) and angles (°): Ru(1)-Ru(3) 2.909(2), Ru(1)-Ru(4) 2.893(2), Ru(1)-Ru(5) 2.829(2), Ru(2)-Ru(3) 2.885(2), Ru(2)-Ru(4) 2.906(2), Ru(2)-Ru(5) 2.719(2), Ru(3)-Ru(4) 2.631(2), Ru(1)-S(1) 2.435(3), Ru(2)-S(1) 2.463(3), Ru(3)-S(1) 2.367(3), Ru(5)-S(1), 2.400(3), Ru(1)-S(2) 2.441(3), Ru(3)-S(1) 2.367(3), Ru(4)-S(2) 2.366(3), Ru(5)-S(2) 2.440(3), Ru(3)-S(1) 1.957(9), Ru(4)-C(1) 1.949(9), Ru(2)-C(6) 2.009(9), Ru(5)-C(6) 1.936(9), C(1)-N(1) 1.29(1), C(6)-N(2) 1.29(1), Ru(3)-C(1)-Ru(4) 84.7(4), Ru(3)-C(1)-N(1) 137.4(6), Ru(4)-C(1)-N(1) 137.9(6), Ru(2)-C(6)-Ru(5) 87.1(3), Ru(2)-C(6)-N(2) 137.3(7), Ru(5)-C(6)-N(2) 135.5(7).

Scheme 2.

equivalent Et groups with diastereotopic CH_2 protons giving an ABX₃ ¹H NMR pattern and the Et groups in the other ligand are non-equivalent but there is a molecular mirror plane through the ligand so that two A_2X_3 patterns are observed.

The structure of cluster 4 is electron-precise with seven Ru-Ru bonds, the shortest of which are those bridged by the alkylidyne ligands [Ru(2)-Ru(5) 2.719(2) and Ru(3)-Ru(4) 2.631(2) Å with the others in the range 2.829(2) to 2.909(2) Å]. The carbonyl ligand C(11)O(11) is bonded to Ru(1), but could be considered to be semi-bridging to Ru(5).

Note added in proof

Recently an analogue of compound 4 has been reported to be derived from $[Ru_3(CO)_{12}]$ and the thiourea, $(Me_2N)_2CS$. The overall structure of the product $[Ru_5(\mu_4-S)_2(\mu-CNMe_2)_2(CO)_{11}]$ is similar to that we report for the CNEt₂ compound. [U. Bodensieck, H. Stoeckli-Evans, G. Rheinwald and G. Süss-Fink, J. Organomet. Chem., 433 (1992) 167.]

Acknowledgements

We thank the SERC for funds towards the purchase of the diffractometer and for a research studentship (for R.V.), and the University of London Central Research Fund for support.

References

- 1 A.M. Bond and R.L. Martin, Coord. Chem. Rev., 54 (1984) 23.
- 2 L. Ricard, J. Estienne and R. Weiss, J. Chem. Soc., Chem. Commun., (1972) 906.
- 3 L. Ricard, J. Estienne and R. Weiss, Inorg. Chem., 9 (1973) 2182.

C10

- 4 R.S. Herrick, S.J. Nieter-Burgmayer and J.L. Templeton, J. Am. Chem. Soc., 105 (1983) 2599.
- 5 P.F. Gilletti, D.A. Femec, F.I. Keen and T.M. Brown, *Inorg. Chem.*, 31 (1992) 4008.
- 6 T.A. Coffey, G.D. Forster and G. Hogarth, personal communication.
- 7 A.J. Deeming, K.I. Hardcastle and M. Karim, Inorg. Chem., 31 (1992) 4792.
- 8 A.J. Deeming and M. Karim, Polyhedron, 10 (1991) 837.
- 9 K.I. Hardcastle, B.R. Cockerton, A.J. Deeming and M. Karim, J. Chem. Soc., Dalton Trans., (1992) 1607.
- Selected spectroscopic data for 3: ν(CO)/cm⁻¹ (cyclohexane): 2036s and 1974s; ¹H NMR (CDCl₃, 400 MHz, J in Hz): δ 3.78, 3.63 (AB q of 1:3:3:1 q, J_{AB} 14.0), 3.67 (1:3:3:1 q), 1.25 (t, J 7.2), 1.23 (t, J 7.2); CHN analysis satisfactory; parent ion observed in MS.
- 11 Selected spectroscopic data for 4: ν(CO)/cm⁻¹ (cyclohexane): 2059w, 2029s, 2015vs, 1999m, 1990m, 1983m, 1939w, 1932w, ¹H

NMR (CDCl₃, 400 MHz, J in Hz): δ 4.92, 4.76 (AB q of 1:3:3:1 q, J_{AB} 13.5); 4.60 (1:3:3:1 q), 3.82 (1:3:3:1 q), 1.86 (t, J 7.2, Me₂), 1.70 (t, J 7.3, Me), 1.26 (t, J 7.3, Me); parent ion observed in MS.

12 Structure of 4. Deep red platelet, $C_{21}H_{20}N_2O_{11}Ru_5S_2$, $M = 1045.90 \text{ g mol}^{-1}$, size = $0.60 \times 0.40 \times 0.07 \text{ mm}^3$, monoclinic, $P2_1/n$, a = 8.536(5), b = 28.76(2), c = 12.453(6) Å, $\beta = 105.85(4)^\circ$, V = 2941(3) Å³, Z = 4, $D_{calc} = 2.36$ g cm⁻³, μ (Mo-K α) = 26.6 cm⁻¹, F(000) = 2000, Nicolet R3v/m diffractometer, Mo-radiation ($\lambda = 0.71073$ Å), room temperature data corrected empirically for absorption. Direct methods, R = 0.0493, R' = 0.0584, where $R' = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma w |F_o|^2]^{1/2}$ and $w = 1/[\sigma^2(F_o) + 0.00718F_o^2]$, 370 parameters and 4035 data with $I_o > 2\sigma(I_9)$ in the range $5 \ge 2\theta \le 50^\circ$. All non-H atoms anisotropic, H-atoms included in idealised positions (C-H 0.96 Å, U = 0.08 Å²). Atomic coordinates, bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.